Abstract

Bismuth tungsten oxide and vanadium pentoxide (Bi2WO6/V2O5) heterostructures are produced by a green synthesis approach using Azadirachta indica extract for photocatalytic performance. The hydrothermal method at temperatures between 120 °C and 140 °Cis used to synthesize Bi2WO6. Bi2WO6 and V2O5 phases are formed in pure orthorhombic wells according to the XRD pattern. The SEM displays V2O5 nanorods, Bi2WO6 hierarchical microspheres that resemble flowers at 120 °C, and particles with a particle-like character at 140 °C. In V2O5, the asymmetric stretching vibrations of the triplely coordinated oxygen (chain oxygen) bonds and the vibration of the doubly coordinated oxygen (bridge oxygen) bonds are responsible for a peak at 611 cm−1. In FTIR spectra between 600 and 1600 cm−1, the major absorption bands in Bi2WO6 are attributed to the W-O stretching, Bi-O stretching, and W-O-W bridging stretching modes. Bi2WO6@V2O5 at 120 °C has the lowest bandgap energy (2.32 eV) and optical electronegativity (0.62), as well as the highest refractive index (2.57), extinction coefficient (2.21), and dielectric constant (εr = 0.72 and εi = 11.4) among all samples, making it a suitable material for photocatalysis. Rhodamine blue (RhB) dye degradation is used to measure the photocatalytic activity (PCA) of certain materials. The results showed that heterostructure V2O5@Bi2WO6 synthesized at 120 °C is more attractive among all samples due to high degradation of RhB dye under sunlight irradiation in 90 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call