Abstract
Dopamine (DBA) as an important biomarker, plays a crucial role in disease diagnosis. In this study, we have developed a fast and simple aptamer-based fluorescence strategy which used single-wall carbon nanohorns (SWCNHs) as a quencher for dopamine detection. SWCNHs were negatively charged after pretreated, which improved its dispersion in solution. 5-carboxy-fluorescein (FAM) was used to label dopamine aptamer. In the absence of dopamine, FAM-modified aptamer could be absorbed onto the SWCNHs surface due to π-π interaction, resulting in the fluorescence intensity decreased. Dopamine could specifically bind with FAM-DNA to form G-quadruplex, which could not be absorbed onto the surface of SWCNHs. Hence, the fluorescence of FAM-DNA recovered, and the fluorescent intensity as a function of different concentrations of dopamine was measured. We obtained a detection limit of 5 μM for this detection system with a linear detection range of 0.02–2.20 mM. Furthermore, the feasibility of the innovative detection system has been verified by detecting dopamine in spiked serum samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have