Abstract

A novel approach toward the construction of multicomponent two-dimensional (2-D) and three-dimensional (3-D) metallosupramolecules is reported. Simply by mixing carboxylate and pyridyl ligands with cis-Pt(PEt(3))(2)(OTf)(2) in a proper ratio, coordination-driven self-assembly occurs, allowing for the selective generation of discrete multicomponent structures via charge separation on the metal centers. Using this method, a variety of 2-D rectangles and 3-D prisms were prepared under mild conditions. Moreover, multicomponent self-assembly can also be achieved by supramolecule-to-supramolecule transformations. The products were characterized by (31)P and (1)H multinuclear NMR spectroscopy, electrospray ionization mass spectrometry, and pulsed-field-gradient spin echo NMR techniques together with computational simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.