Abstract
Pure pseudo cubic shaped copper ferrite nanoparticles with narrow size distribution in the range 6–17 nanometer are prepared by hydrothermal method under various synthesis conditions namely, hydrothermal temperature, heating time, and pH. The structural and morphological studies are carried out in detail using XRD and TEM analysis. The crystallite size and particle size are calculated from different characterization techniques. The distribution of cations among the tetrahedral and octahedral sites is determined from the XRD intensity calculation. Compositional features are determined from EDS analysis. Magnetic studies are carried out using VSM at room temperature and the important magnetic parameters are extracted from it. Contributions due to various types of magnetization to the total magnetization are determined from the theoretical fitting of the magnetization curve. Excellent fits are obtained for all samples prepared under various conditions. The ferromagnetic, superparamagnetic and paramagnetic contributions to the magnetization are determined from the analysis of fitted M-H curve. It is observed that the hydrothermal reaction time and temperature has little effect on the structural and magnetic parameters of the material. However, pH plays a crucial role in the physical properties of nanoparticles. Optimized synthesis conditions are identified for changing the soft ferrimagnetic nature of copper ferrite nanoparticles to superparamagnetic nature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have