Abstract

A superhydrophobic Cu/TiO2 composite coating was prepared through the electrodeposition and fluorinated modification of a 304 stainless steel surface. The Cu plating coated with the hierarchical concave-convex structure was initially fabricated by tuning current density and electrodeposition time. A codeposition technique was used in obtaining a composite coating comprising Cu matrix and TiO2 nanoparticles on the basis of the optimal electrodeposition parameters, then fluorination modification was immediately conducted for the production of a superhydrophobic Cu/TiO2 composite coating. The surface structure and chemical composition for the prepared coatings were studied. The wettability property shows that the modified Cu/TiO2 composite coating possesses excellent superhydrophobicity, with a water contact angle (CA) of 156.4° and a sliding angle (SA) of 4.6°. The superior mechanical stability of the superhydrophobic Cu/TiO2 composite coating has been confirmed using scratching, tape peeling and sandpaper abrasion tests, respectively. In addition, compared to the stainless steel with a certain protection capability, the corrosion current density of the as-prepared composite coating is decreased by nearly two orders of magnitude, and the corrosion resistance significantly improves. This composite coating exhibits the outstanding long-term stability and self-cleaning property, and may thus be a valuable tool for enlarging the application of the superhydrophobic coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.