Abstract

Amorphous calcium phosphate (ACP) nanoparticles were synthesized using a sustainable method based on precipitation of calcium and phosphate precursors in deep eutectic solvents (DESs). To this aim, three types of DESs, i.e., choline chloride–urea, choline chloride–ethylene glycol, and choline chloride–glycerol were prepared by simple heating-mixing method. The DESs were used as synthesis media for synthesis of ACP nanoparticles from Calcium nitrate tetrahydrate/calcium chloride and di-potassium hydrogen orthophosphate/di-ammonium hydrogen orthophosphate precursors. Characterization of the synthesized ACP nanoparticles by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy–selected area electron diffraction, energy dispersive X-ray spectroscopy, and Fourier transform infrared spectroscopy confirmed the formation of amorphous nanoparticles with spherical morphology and a high elemental/structural purity. Based on the results, with the change of DES from choline chloride–urea to choline chloride–ethylene glycol the diameter and Ca/P molar ratio of ACP nanoparticles changed from 24 to 39nm, and 1.15 to 1.01 respectively. No significant changes in particle size of ACP nanoparticles were detected with change of precursors. After synthesis, DESs were recovered and re-used for synthesis of ACP nanoparticles. Analysis results suggested successful synthesis of ACP nanoparticles with high phase/elemental purity in the recovered DESs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.