Abstract
Since the first reports of Cu dendrimer-encapsulated nanoparticles (DENs) published in 1998, the dendrimer-templating method has become the best and most versatile method for preparing ultrafine metallic and bimetallic nanoparticles (1-3 nm) with well-defined compositions, high catalytic activity, and tunable selectivity. However, DENs have remained for the most part model systems with limited prospects for scale up and integration into high-performance and reusable catalytic modules and systems for industrial-scale applications. Here, we describe a facile and scalable route to the preparation of catalytic polyvinylidene fluoride (PVDF) membranes with in situ synthesized supramolecular dendrimer particles (SDPs) that can serve as hosts and containers for Pt(0) nanoparticles (2-3 nm). These new catalytic membranes were prepared using a reactive encapsulation process similar to that utilized to prepare Pt DENs by addition of a reducing agent (sodium borohydride) to aqueous complexes of Pt(II) + G4-OH/G6-OH polyamidoamine (PAMAM) dendrimers. However, the SDPs (2.4 μm average diameter) of our new mixed matrix PVDF-PAMAM membranes were synthesized in the dope dispersion without purification prior to film casting using (i) a low-generation PAMAM dendrimer (G1-NH2) as particle precursor and (ii) epichlorohydrin, an inexpensive functional reagent, as cross-linker. In addition, the membrane PAMAM particles contain secondary amine groups (∼1.9 mequiv per gram of dry membrane), which are more basic and thus have higher Pt binding affinity than the tertiary amine groups of the G4-OH and G6-OH PAMAM dendrimers. Proof-of-concept experiments show that our new PVDF-PAMAM-G1-Pt/membranes can serve as highly active and reusable catalysts for the hydrogenation of alkenes and alkynes to the corresponding alkanes using (i) H2 at room temperature and a pressure of 1 bar and (ii) low catalyst loadings of ∼1.4-1.6 mg of Pt. Using cyclohexene as model substrate, we observed near quantitative conversion to cyclohexane (∼98%). The regeneration studies showed that our new Pt/membrane catalysts are stable and can be reused for five consecutive reaction cycles for a total duration of 120 h including 60 h of heating at 100 °C under vacuum for substrate, product, and solvent removal with no detectable loss of cyclohexene hydrogenation activity. The overall results of our study point to a promising, versatile, and scalable path for the integration of catalytic membranes with in situ synthesized SDP hosts for Pt(0) nanoparticles into high-throughput modules and systems for heterogeneous catalytic hydrogenations, an important class of reactions that are widely utilized in industry to produce pharmaceuticals, agrochemicals, and specialty chemicals.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have