Abstract
Mesoporous anatase TiO2 nanomaterials (MATNs) with both large specific surface areas and structural coherence are highly desirable to achieve excellent physicochemical properties for photovoltaic applications, but the existing synthesis methods either need templates or cause pollution. Herein we report a simple, template-free, and green approach to synthesize MATNs consisting of interconnected nanoparticles. The Ti-complex intermediates were first prepared using titanium isopropoxide and acetic acid in a solvothermal reaction, which went through a morphology transformation sequence of nanowires, microspheres, and microflowers with a prolonged reaction time. Then the Ti-complex intermediates were cracked into MATNs under annealing, which were applied in dye-sensitized solar cells (DSSCs) and hole-conductor-free perovskite solar cells (HPSCs). The mesoporous anatase TiO2 nanowire-based DSSCs achieved a high power conversion efficiency (PCE) up to 7.78% because of both a high dye-adsorption capacity and long...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.