Abstract
High-frequency data in finance have led to a deeper understanding on probability distributions of market prices. Several facts seem to be well established by empirical evidence. Specifically, probability distributions have the following properties: (i) They are not Gaussian and their center is well adjusted by Lévy distributions. (ii) They are long-tailed but have finite moments of any order. (iii) They are self-similar on many time scales. Finally, (iv) at small time scales, price volatility follows a non-diffusive behavior. We extend Merton's ideas on speculative price formation and present a dynamical model resulting in a characteristic function that explains in a natural way all of the above features. The knowledge of such a distribution opens a new and useful way of quantifying financial risk. The results of the model agree – with high degree of accuracy – with empirical data taken from historical records of the Standard & Poor's 500 cash index.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have