Abstract
The aim of this manuscript is to approach by means of first order differential equations/inclusions convex programming problems with two-block separable linear constraints and objectives, whereby (at least) one of the components of the latter is assumed to be strongly convex. Each block of the objective contains a further smooth convex function. We investigate the dynamical system proposed and prove that its trajectories converge weakly to a saddle point of the Lagrangian of the convex optimization problem. The dynamical system provides through time discretization the alternating minimization algorithm AMA and also its proximal variant recently introduced in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.