Abstract
An inexact accelerated stochastic Alternating Direction Method of Multipliers (AS-ADMM) scheme is developed for solving structured separable convex optimization problems with linear constraints. The objective function is the sum of a possibly nonsmooth convex function and a smooth function which is an average of many component convex functions. Problems having this structure often arise in machine learning and data mining applications. AS-ADMM combines the ideas of both ADMM and the stochastic gradient methods using variance reduction techniques. One of the ADMM subproblems employs a linearization technique while a similar linearization could be introduced for the other subproblem. For a specified choice of the algorithm parameters, it is shown that the objective error and the constraint violation are $$\mathcal {O}(1/k)$$ relative to the number of outer iterations k. Under a strong convexity assumption, the expected iterate error converges to zero linearly. A linearized variant of AS-ADMM and incremental sampling strategies are also discussed. Numerical experiments with both stochastic and deterministic ADMM algorithms show that AS-ADMM can be particularly effective for structured optimization arising in big data applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.