Abstract

Ensemble models have emerged as a powerful technique for improving robustness in medical image segmentation. However, traditional ensembles suffer from limitations such as under-confidence and over-reliance on poor performing models. In this work, we introduce an Adaptive Uncertainty-based Ensemble (AUE) model for tumor segmentation in histopathological slides. Our approach leverages uncertainty estimates from Monte Carlo dropout during testing to dynamically select the optimal pair of models for each whole slide image. The AUE model combines predictions from the two most reliable models (K-Net, ResNeSt, Segformer, Twins), identified through uncertainty quantification, to enhance segmentation performance. We validate the AUE model on the ACDC@LungHP challenge dataset, systematically comparing it against state-of-the-art approaches. Results demonstrate that our uncertainty-guided ensemble achieves a mean Dice score of 0.8653 and outperforms traditional ensemble techniques and top-ranked methods from the challenge by over 3 %. Our adaptive ensemble approach provides accurate and reliable lung tumor delineation in histopathology images by managing model uncertainty.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.