Abstract

We study the interface dynamics and contact angle hysteresis in a two dimensional, chemically patterned channel described by the Cahn-Hilliard equation with a relaxation boundary condition. A system for the dynamics of the contact angle and contact point is derived in the sharp interface limit. We then analyze the behavior of the solution using the phase plane analysis. We observe the stick-slip of the contact point and the contact angle hysteresis. As the size of the pattern decreases to zero, the stick-slip becomes weaker but the hysteresis becomes stronger in the sense that one observes either the advancing contact angle or the receding contact angle without any switching in between. Numerical examples are presented to verify our analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.