Abstract
The noncanonical heme oxygenase MhuD from Mycobacterium tuberculosis binds a heme substrate that adopts a dynamic equilibrium between planar and out-of-plane ruffled conformations. MhuD degrades this substrate to an unusual mycobilin product via successive monooxygenation and dioxygenation reactions. This article establishes a causal relationship between heme substrate dynamics and MhuD-catalyzed heme degradation, resulting in a refined enzymatic mechanism. UV/vis absorption (Abs) and electrospray ionization mass spectrometry (ESI-MS) data demonstrated that a second-sphere substitution favoring the population of the ruffled heme conformation changed the rate-limiting step of the reaction, resulting in a measurable buildup of the monooxygenated meso-hydroxyheme intermediate. In addition, UV/vis Abs and ESI-MS data for a second-sphere variant that favored the planar substrate conformation showed that this change altered the enzymatic mechanism resulting in an α-biliverdin product. Single-turnover kinetic analyses for three MhuD variants revealed that the rate of heme monooxygenation depends upon the population of the ruffled substrate conformation. These kinetic analyses also revealed that the rate of meso-hydroxyheme dioxygenation by MhuD depends upon the population of the planar substrate conformation. Thus, the ruffled heme conformation supports rapid heme monooxygenation by MhuD, but further oxygenation to the mycobilin product is inhibited. In contrast, the planar substrate conformation exhibits altered heme monooxygenation regiospecificity followed by rapid oxygenation of meso-hydroxyheme. Altogether, these data yielded a refined enzymatic mechanism for MhuD where access to both substrate conformations is needed for rapid incorporation of three oxygen atoms into heme yielding mycobilin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.