Abstract
Unpredictable sudden disturbances such as machine failure, processing time lag, and order changes increase the deviation between actual production and the planned schedule, seriously affecting production efficiency. This phenomenon is particularly severe in flexible manufacturing. In this paper, a dynamic scheduling method combining iterative optimization and deep reinforcement learning (DRL) is proposed to address the impact of uncertain disturbances. A real-time DRL production environment model is established for the flexible job scheduling problem. Based on the DRL model, an agent training strategy and an autonomous decision-making method are proposed. An event-driven and period-driven hybrid dynamic rescheduling trigger strategy (HDRS) with four judgment mechanisms has been developed. The decision-making method and rescheduling trigger strategy solve the problem of how and when to reschedule for the dynamic scheduling problem. The data experiment results show that the trained DRL decision-making model can provide timely feedback on the adjusted scheduling arrangements for different-scale order problems. The proposed dynamic-scheduling decision-making method and rescheduling trigger strategy can achieve high responsiveness, quick feedback, high quality, and high stability for flexible manufacturing process scheduling decision making under sudden disturbance.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have