Abstract
Moving objects are often occluded by neighboring objects. In order for the eye to smoothly pursue a moving object that is transiently occluded, a prediction of its trajectory is necessary. For targets moving on a linear path, predictive eye velocity can be regulated on the basis of target motion before and after the occlusions. However, objects in a more dynamic environment move along more complex trajectories. In this condition, a dynamic internal representation of target motion is required. Yet, the nature of such an internal representation has never been investigated. Similarly, the impact of predictive saccades on the predictive smooth pursuit response has never been considered. Therefore, we investigated the predictive smooth pursuit and saccadic responses during the occlusion of a target moving along a circular path. We found that the predictive smooth pursuit was driven by an internal representation of target motion that evolved with time. In addition, we demonstrated that in two dimensions, the predictive smooth pursuit system does influence the amplitude of predictive saccades but not vice versa. In conclusion, in the absence of retinal inputs, the smooth pursuit system is driven by the output of a short-term velocity memory that contains the dynamic representation of target motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.