Abstract

The hierarchical model of intrinsic and extrinsic motivation (HMIEM) is a framework based on the principles of self-determination theory (SDT) which describes human motivation from a multilevel perspective, and integrates knowledge on personality and social psychological determinants of motivation and its consequences. Although over the last decades HMIEM has grounded numerous correlational studies in diverse fields, it is conceptually defined as a schematic representation of the dynamics of motivation, that is not suitable for human and artificial agents research based on tracking. In this work we propose an analytic description named dynamic computational model of motivation (DCMM), inspired by HMIEM and based on continuous attractor neural networks, which consists in a computational framework of motivation. In DCMM the motivation state is represented within a self-determination continuum with recurrent feedback connections, receiving inputs from heterogeneous layers. Through simulations we show the modeling of complete scenarios in DCMM. A field study with faculty subjects illustrates how DCMM can be provided with data from SDT constructs observations. We believe that DCMM is relevant for investigating unresolved issues in HMIEM, and potentially interesting to related fields, including psychology, artificial intelligence, behavioral and developmental robotics, and educational technology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call