Abstract
The influence of the solvent in the reaction of dysprosium(III) chloride hydrate with the N3O2 ligand H2L (2,6-bis(2-hydroxyphenyliminomethyl)pyridine) was studied To this end, the new mononuclear chloride complex [Dy(L)Cl(H2O)2] (1) was isolated in absolute ethanol as solvent, without any evidence of the hydrolysis of the ligand. This clearly contrasts with previous results, where a similar reaction in methanol proceeds with the partial hydrolysis of the Schiff base, and the formation of a new hemiacetal donor to yield [Dy(HL’)2)][Dy(L)(Cl2)] (H2L’ = (6-(2-hydroxyphenyliminomethyl)-2-methoxyhydroxymethyl)pyridine). The single crystal X-ray structure of the chloride complex 1 shows that the DyIII ion is octacoordinated in a highly distorted N3O4Cl environment between triangular dodecahedral and biaugmented trigonal prisms. The full magnetic characterisation of 1 shows that it presents field-induced single ion magnet behaviour, with a thermal energy barrier Ueff of 113.5 K, which is the highest among dysprosium complexes derived from H2L.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have