Abstract
Bile duct injury is a common complication of hepatobiliary surgeries in clinical practice with poorly satisfactory treatment outcomes. Implanting a tissue-engineered tubular scaffold for supporting and replacing defected native bile duct is an important treatment option for bile duct injury. Here a dual-layer tubular scaffold with poly (lactic-co-glycolic acid) (PLGA) inner layer and gelatin methacrylate (GelMA)/poly (ethylene glycol) diacrylate (PEGDA) outer layer was fabricated using a two-stage molding method for bile duct regeneration. Further, induced mesenchymal stem cells (MSC)-derived cholangiocyte-like cells were embedded in the outer layer during fabrication. The inner layer of PLGA offered adequate mechanical strength for the scaffold, and the outer layer of GelMA/PEGDA provided excellent biocompatibility and conditions for the MSCs and their induced differentiation. Moreover, cholic acid and its derivates are believed to induce MSC-cholangiocyte differentiation in two-dimensional culture and could affect the MSCs transforming to cholangiocyte-like cells in the hydrogel. Induced-MSC-laden GelMA/PEGDA-PLGA dual-layer tubular scaffold and PLGA single-layer scaffold were transplanted into animal models for assessing the repair effect on bile duct injury. After 12 wk, induced-MSC-laden dual-layer tubular scaffold promoted bile duct repairing and enhanced more intact biliary epithelium regenerating compared to PLGA single-layer scaffold. Therefore, the induced-MSC-laden dual-layer tubular scaffold with superior biocompatibility and distinct function of inducing differentiation exerted a satisfactory effect on bile duct regeneration and could provide an ideal option for the clinical treatment of bile duct injury in the future.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have