Abstract
AbstractIn this paper we study solutions of an inverse problem for a global shallow water model controlling its initial conditions specified from the 40‐yr ECMWF Re‐analysis (ERA‐40) data sets, in the presence of full or incomplete observations being assimilated in a time interval (window of assimilation) with or without background error covariance terms. As an extension of the work by Chen et al. (Int. J. Numer. Meth. Fluids 2009), we attempt to obtain a reduced order model of the above inverse problem, based on proper orthogonal decomposition (POD), referred to as POD 4D‐Var for a finite volume global shallow water equation model based on the Lin–Rood flux‐form semi‐Lagrangian semi‐implicit time integration scheme. Different approaches of POD implementation for the reduced inverse problem are compared, including a dual‐weighted method for snapshot selection coupled with a trust‐region POD adaptivity approach. Numerical results with various observational densities and background error covariance operator are also presented. The POD 4‐D Var model results combined with the trust‐region adaptivity exhibit similarity in terms of various error metrics to the full 4D Var results, but are obtained using a significantly lesser number of minimization iterations and require lesser CPU time. Based on our previous and current work, we conclude that POD 4‐D Var certainly warrants further studies, with promising potential of its extension to operational 3‐D numerical weather prediction models. Copyright © 2011 John Wiley & Sons, Ltd.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have