Abstract
We introduce a transient reflected Brownian motion in a multidimensional orthant, which is either absorbed at the apex of the cone or escapes to infinity. We address the question of computing the absorption probability, as a function of the starting point of the process. We provide a necessary and sufficient condition for the absorption probability to admit an exponential product form, namely that the determinant of the reflection matrix is zero. We call this condition a dual skew symmetry. It recalls the famous skew symmetry introduced by Harrison (Adv Appl Probab 10:886–905, 1978), which characterizes the exponential stationary distributions in the recurrent case. The duality comes from that the partial differential equation satisfied by the absorption probability is dual to the one associated with the stationary distribution in the recurrent case.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.