Abstract
Fundamental matrix plays an important role in a finite-state Markov chain to find many characteristic values such as stationary distribution, expected amount of time spent in the transient state, absorption probabilities. In this paper, the fundamental matrix of the finite-state quasi-birth-and-death (QBD) process with absorbing state and level dependent transitions is considered. We show that each block component of the fundamental matrix can be expressed as a matrix product form and present an algorithm for computing the fundamental matrix. Some applications with numerical results are also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.