Abstract

A dual neural network is presented for the real-time joint torque optimization of kinematically redundant manipulators, which corresponds to global kinetic energy minimization of robot mechanisms. Compared to other computational strategies on inverse kinematics, the dual network is developed at the acceleration level to resolve redundancy of limited-joint-range manipulators. The dual network has a simple architecture with only one layer of neurons and is proved to be globally exponentially convergent to optimal solutions. The dual neural network is simulated with the PUMA 560 robot arm to demonstrate effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.