Abstract

The aim of this work is a construction of a dual mixed finite element method for a quasi-Newtonian flow obeying the Carreau or power law. This method is based on the introduction of the stress tensor as a new variable and the reformulation of the governing equations as a twofold saddle point problem. The derived formulation possesses local (i.e. at element level) conservation properties (conservation of the momentum and the mass) as for finite volume methods. Based on such a formulation, a mixed finite element is constructed and analyzed. We prove that the continuous problem and its approximation are well posed, and derive error estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.