Abstract

Bioorthogonal prodrug therapies offer an intriguing two-component system that features enhanced circulating stability and controlled activation on demand. Current strategies often deliver either the prodrug or its complementary activator to the tumor with a monomechanism targeted mechanism, which cannot achieve the desired antitumor efficacy and safety profile. The orchestration of two distinct and orthogonal mechanisms should overcome the hierarchical heterogeneity of solid tumors to improve the delivery efficiency of both components simultaneously for bio-orthogonal prodrug therapies. We herein developed a dual-mechanism targeted bioorthogonal prodrug therapy by integrating two orthogonal, receptor-independent tumor-targeting strategies. We first employed the endogenous albumin transport system to generate the in situ albumin-bound, bioorthogonal-caged doxorubicin prodrug with extended plasma circulation and selective accumulation at the tumor site. We then employed enzyme-instructed self-assembly (EISA) to specifically enrich the bioorthogonal activators within tumor cells. As each targeted delivery mode induced an intrinsic pharmacokinetic profile, further optimization of the administration sequence according to their pharmacokinetics allowed the spatiotemporally controlled prodrug activation on-target and on-demand. Taken together, by orchestrating two discrete and receptor-independent targeting strategies, we developed an all-small-molecule based bioorthogonal prodrug system for dual-mechanism targeted anticancer therapies to maximize therapeutic efficacy and minimize adverse drug reactions for chemotherapeutic agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.