Abstract

AbstractResonant frequency varies significantly due to temperature changes for microwave resonant cavities. Hence, temperature robustness enhancement is of great importance. In this paper, a resonant cavity with enhanced temperature robustness is proposed by applying the dual-material strategy to the middle cavity. Compared to the single-material cavity, the dual-material cavity can demonstrate better temperature robustness with a decrease of 72.7% in the frequency shift over the temperature range of −20 to 80°C. Moreover, the |S11| < −10 dB impedance bandwidth is 6.3% (3.39–3.61 GHz) and the gain is 20.4 dBi at 3.5 GHz for the manufactured dual-material cavity, which are much better than those of the manufactured single-material cavity. Finally, an experiment is conducted to measure the resonant frequencies with the sample solution tube of the dual-material cavity filled with nothing or 30 mg/dl CuSO4 solution, the measured values are consistent with the simulated ones. The influence of temperature drift is significantly reduced, and the feasibility of the dual-material strategy is verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.