Abstract

PurposeThe purpose of this paper is to present a fast and bare bones implementation of a numerical method for quickly simulating turbulent thermal flows on GPUs. The work also validates earlier research showing that the lattice Boltzmann method (LBM) method is suitable for complex thermal flows.Design/methodology/approachA dual lattice hydrodynamic (D3Q27) thermal (D3Q7) multiple-relaxation time LBM model capable of thermal DNS calculations is implemented in CUDA.FindingsThe model has the same computational performance compared to earlier publications of similar LBM solvers. The solver is validated against three benchmark cases for turbulent thermal flow with available data and is shown to be in excellent agreement.Originality/valueThe combination of a D3Q27 and D3Q7 stencil for a multiple relaxation time -LBM has, to the authors’ knowledge, not been used for simulations of thermal flows. The code is made available in a public repository under a free license.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.