Abstract
Highly sensitive and selectivite detection of copper ions (Cu2+) and hydrogen sulfide (H2S) have become important research topics due to the potential harmful impacts of these chemicals to human health and the environment. In this study, we report the synthesis of a dual-functional peptide-based probe L (FITC-AhxSerSerHis), designed to mimic a copper-sulfur metalloprotein, and capable of continuous detection of Cu2+ and S2- based on colorimetric and fluorescent methods. The new probe L displayed excellent “turn off” fluorescence response and good selectivity for Cu2+ ions via a modification of the tripeptide and fluorescein isothiocyanate group, and produced an obvious color change visible to the naked eye. Furthermore, as an excitable probe, the L-Cu complex could continuously detect S2- with high selectivity and sensitivity in 100% aqueous buffered solutions. The detection limits for fluorescence titration measurements, calculated using the equation 3σ/k, were 76.7 nM (Cu2+) and 27.2 nM (S2-), which were well below U.S. EPA safety levels. In addition, L could be cycled to alternately detect Cu2+ and S2-, thereby making it a promising reversible probe. Moreover, L was successfully applied to monitoring Cu2+ and S2- in live RKO cells through fluorescence imaging, exhibiting low cytotoxicity and good cell permeability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have