Abstract

We report the development of a dual-enzyme electrochemical biosensor based on microfabricated gold band array electrodes which were first modified by gold foam (Au-foam) in order to dramatically increase the active surface area. The resulting nanostructured Au-foam deposits then served as a highly porous 3D matrix for the electrodeposition of a nanocomposite film consisting of multi walled carbon nanotubes embedded in a chitosan matrix (CS:MWCNT) designed to provide a conducting, biocompatible and chemically versatile surface suitable for the attachment of a wide range of chemically or biologically active agents. Finally, a dual enzyme mixture of glucose oxidase (GOx) and horseradish peroxidase (HRP) was immobilised onto the CS:MWCNT nanocomposite film surface. It is shown that the resulting sensing platform developed demonstrates excellent analytical performance in terms of glucose detection with a sensitivity of 261.8 μA mM-1 cm-2 and a reproducibility standard deviation (RSD) of 3.30% as determined over 7 measurements. Furthermore, long term stability studies showed that the electrodes exhibited an effectively unchanged response to glucose detection after some 45 days. The example of glucose detection presented here illustrates the fact that the particular combination of nanostructured materials employed represents a very flexible platform for the attachment of enzymes or indeed any other bioactive agent and as such may form the basis of the fabrication of a wide range of biosensors. Finally, since the platform used is based on lithographically-deposited gold electrodes on silicon, we note that it is also very suitable for further miniaturisation, mass production and packaging- all of which would serve to reduce production costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.