Abstract

In this paper, blue fluorescent silicon nanoparticles (SiNPs) with outstanding optical properties and robust stability were synthesized by a simple one-step hydrothermal method. By introducing red emissive rhodamine B (RhB) into SiNPs solution, a dual emission nanoprobe (SiNPs@RhB) was constructed, which showed excellent pH stability, salt resistance and photobleaching resistance. The SiNPs@RhB probe could emit two peaks at 444nm and 583nm under 365nm excitation. It was found that the fluorescence intensity of the two emission peaks decreased in different degrees with the addition of different concentrations of kaempferol (Kae). According to this phenomenon, a novel ratiometric fluorescence method was established for the detection of Kae via utilizing SiNPs@RhB as nanoprobe. The detection range and limit of detection (LOD) were 0.5 ~ 150 µM and 0.24 µM, respectively. The ratiometric fluorescence method exhibited the superiority of rapid detection, excellent stability, wide linear range and high sensitivity. The detection mechanism was studied by ultraviolet visible absorption spectra, fluorescence spectra and fluorescence lifetime. Furthermore, the method was applied to the detection of Kae in real samples (kaempferia powder, sea buckthorn granules and sea buckthorn dry emulsion).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.