Abstract
Traditional numerical methods for the delineation of wellhead protection areas span deterministic and probabilistic approaches. They provide time-related capture zones. However, none of the existing approaches identifies the groundwater contribution areas related to each source or sink. In this work, the worthiness of the so-called double delineation approach was extended. This task was achieved by simple postprocessing of its dual outputs leading to a highly efficient screening tool. In the particular context of geothermal resources management through the well doublets of the Dogger aquifer in the Paris Basin (France), the approach was extended to forecast the compositional heat breakthrough at production wells. Hence, cold-water breakthrough and temperature decline in production wells are timely assessed in low-enthalpy geothermal reservoirs. The method quantifies how groundwater volumes are moving through space and time between any couple of source and sink. It provides unprecedented tools advancing the enhanced understanding of water resources systems functioning. It is highly recommended to implement the presented concepts in the current and future generations of community groundwater models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.