Abstract

Various delineation methods, ranging from simple analytical solutions to complex numerical models, have been applied for wellhead protection area (WHPA) delineation. Numerical modeling is usually regarded as the most reliable method, but the uncertainty of input parameters has always been an obstacle. This study aims at examining the results from different WHPA delineation methods and addressing the delineation uncertainty of numerical modeling due to the uncertainty from input parameters. A comparison and uncertainty analysis were performed at two pumping sites—a single well and a wellfield consisting of eight wells in an unconfined coastal aquifer in Israel. By appointing numerical modeling as the reference method, a comparison between different methods showed that a semi-analytical method best fits the reference WHPA, and that analytical solutions produced overestimated WHPAs in unconfined aquifers as regional groundwater flow characteristics were neglected. The results from single well and wellfield indicated that interferences between wells are important for WHPA delineation, and thus, that only semi-analytical and numerical modelling are recommended for WHPA delineation at wellfields. Stochastic modeling was employed to analyze the uncertainty of numerical method, and the probabilistic distribution of WHPAs, rather a deterministic protection area, was generated with considering the uncertain input hydrogeological parameters.

Highlights

  • Worldwide, groundwater provides essential and valuable water resources for drinking water production, agricultural irrigation [1] and industrial processes [2]

  • A central prerequisite for this endeavor is the delineation of wellhead protection area (WHPA) [4]

  • WHPAs delineated by different methods were represented by different colors, and the red zones are the reference protection areas delineated by numerical model

Read more

Summary

Introduction

Groundwater provides essential and valuable water resources for drinking water production, agricultural irrigation [1] and industrial processes [2]. In arid and semi-arid areas where ample surface water sources do not exist, groundwater is often the major, or even the sole, drinking water resource. Human activities, due to increasing livelihood and development demands, have contributed to the deterioration of groundwater quality. Experience in the last decades has shown that once groundwater is contaminated by chemical, biological or radiological agents, it is always difficult to clean up these contaminants, and the remediation involves high costs [3]. Protecting groundwater from pollution is a major task for sustainable water management. A central prerequisite for this endeavor is the delineation of wellhead protection area (WHPA) [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.