Abstract
This paper investigates the numerical and experimental analysis of a low-cost and dual-band microstrip patch antenna for the fifth generation (5G) mobile communications. The numerical analysis of the proposed antenna is performed using the computational electromagnetic simulator (CEMS) software which is based on the finite-difference time-domain (FDTD) and CST software which is based on the finite integration technique (FIT). The performance of the proposed antenna designed and fabricated on a low-cost FR-4 substrate is verified with the simulated and measured results. The antenna operates at dual frequency bands which are 24 and 28 GHz. The antenna maximum gain values are 3.20 dBi and 3.99 dBi in the x-y plane at 24 and 28 GHz, respectively. The proposed antenna provides almost omni-directional patterns suitable for 5G mobile communication devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.