Abstract

Electronic nose (E-nose) systems have a good effect on the identification of distinct odours. However, the properties of chemical gas sensors indicate that ageing, poisoning, fluctuation of environmental conditions (moisture, temperature, etc.) and a lack of fabrication repeatability, etc. have a large impact on the sensitivity and accuracy of sensors, which leads to sensor data drift. Although previous studies have indicated the feasibility and validity of deep learning in drift compensation of gas sensor data, the actual performances of these deep learning models are less impressive compared with some existing methods. Thus, we intend to further explore a novel deep learning model for drift compensation for E-noses. In this paper, we investigate the drift compensation effect of E-nose data based on a deep belief network (DBN) and constructed a Gaussian deep belief classification network (GDBCN) model by cascading a Gaussian-Bernoulli restricted Boltzmann machines based DBN with a softmax classifier layer to compensate for sensor drift at the decision level. The merits of our method are as follows: 1) it is a unified classification model for drift auto-compensation at the decision level rather than a feature extractor; 2) it couples unsupervised and supervised techniques by modelling the intrinsic distribution of the data from different domains in an unsupervised manner and fine-tunes the model parameters by leveraging the label information of the source domain; 3) the supervised fine-tuning process for the coupled GDBCN model fits well with the nature of the supervised task and guarantees that the parameters of the DBN will be useful for classification; 4) the GDBCN model is a classification model and thus automatically compensates for drift without manually setting specific model rules for domain alignment before classification. Experimental results on real sensor datasets demonstrate the effectiveness and superiority compared with several existing control methods.

Highlights

  • An electronic nose (E-nose) is an intelligent instrument that consists of multiple chemical sensors of partial specificity and pattern recognition programs

  • EXPERIMENT ON A BENCHMARK SENSOR DRIFT DATASET 1) BENCHMARK SENSOR DRIFT DATASET FROM UCSD To evaluate the effect of the Gaussian-Bernoulli deep belief classification network (GDBCN) method on the anti-drift problem, we adopt the well-acknowledged public benchmark gas sensor drift dataset from UCSD, which was sampled by Vergara et al [16] over 3 years, to test the method

  • The E-nose system adopted a 16 screen-printed metal oxide semiconductor gas sensor array manufactured by Figaro Inc., and the resulting array consisted of sensor devices

Read more

Summary

Introduction

An electronic nose (E-nose) is an intelligent instrument that consists of multiple chemical sensors (i.e., metal oxide semiconductor gas sensors) of partial specificity and pattern recognition programs. The associate editor coordinating the review of this manuscript and approving it for publication was Inês Domingues. As a gas-sensing device for artificial olfaction, an E-nose consists of a sensor array, a flow control system, a conditioning circuit, a system controller, and a personal computer equipped with a signal-processing program. E-nose systems have become increasingly popular and have been applied in a large number of fields, such as medicine [1]–[4], biology [5]–[8], the food industry [9]–[12], and indoor environment monitoring [13]–[15].

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.