Abstract

The drift caused by gas sensors has always been a bottleneck in the development of electronic nose (E-nose) systems. Traditional drift compensation methods directly correct the drift components, making such approaches time-consuming and laborious. In the field of E-nose drift compensation, cross-domain adaption learning is an efficient technique. In this paper, we propose a novel subspace alignment extreme learning machine (SAELM) that considers multiple criteria to construct a unified extreme learning machine (ELM)-based feature representation space and thus achieve domain alignment. First, the method minimizes both the geometric and statistical distributions between different domains. Second, the dependence between features and labels is enhanced using the Hilbert–Schmidt independence criterion (HSIC) to alleviate the blurring of the correspondence between the two caused by drift. Third, to improve the feature extraction ability of the subspace learning method, the l2,1 norm is leveraged to constrain the output weights of the ELM. The aim of this method is to learn a robust subspace to increase the consistency between domains and enhance the feature–label​ dependency of the source domain while preserving the intrinsic information of both domains. Extensive experiments on sensor drift data are conducted, and the proposed SAELM method yields the greatest improvements on E-nose drift datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.