Abstract

With the increasingly stringent functional requirement of advanced equipment, it is crucial to design materials and structures with special properties. Improving optimization efficiency and shortening the design cycle are widely concerned as important scientific issues. This paper proposes a novel double-layer mesh-driven robust topology optimization strategy for mechanical metamaterials under size uncertainty. A double-layer mesh technology that establishes a mapping relationship between structural response and sensitivity information is developed, which greatly improves computational efficiency. The influence of size uncertainty is considered in topology optimization, and the robust design of mechanical metamaterials is realized. Various metamaterial designs are realized by solving optimization models based on sensitivity information. These can provide technical support and design references for the engineering application of mechanical metamaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call