Abstract

A novel design concept for buckling-induced mechanical metamaterials for energy absorption is presented. The force-displacement curves of the mechanical metamaterials are analyzed according to the curves of their unit cells, and the energy-absorbing characteristics of mechanical metamaterials are evaluated. Two topology optimization models are proposed. One maximizes the buckling-induced dissipated energy to facilitate the design of metamaterials with high energy absorption and low elastic strain energy. The other maximizes the dissipated energy with a constraint that the mechanical metamaterials should be self-recoverable. An energy interpolation scheme is employed to avoid numerical instabilities in the geometric nonlinear finite element analysis. A two-phase algorithm is proposed to find the optimized result from a uniform initial guess, and sensitivity analysis is performed. The optimized design has a larger amount of buckling-induced dissipated energy than the previously proposed structural prototypes. Moreover, the self-recoverable mechanical metamaterial is successfully designed by topology optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call