Abstract

Clean transfer of two-dimensional (2D) materials grown by chemical vapor deposition is critical for their application in electronics and optoelectronics. Although rosin can be used as a support layer for the clean transfer of graphene grown on Cu, it has not been usable for the transfer of 2D materials grown on noble metals or for large-area transfer. Here, we report a poly(methyl methacrylate) (PMMA)/rosin double support layer that enables facile ultraclean transfer of large-area 2D materials grown on different metals. The bottom rosin layer ensures clean transfer, whereas the top PMMA layer not only screens the rosin from the transfer conditions but also improves the strength of the transfer layer to make the transfer easier and more robust. We demonstrate the transfer of monolayer WSe2 and WS2 single crystals grown on Au as well as large-area graphene films grown on Cu. As a result of the clean surface, the transferred WSe2 retains the intrinsic optical properties of the as-grown sample. Moreover, it does not require annealing to form good ohmic contacts with metal electrodes, enabling high-performance field effect transistors with mobility and ON/OFF ratio ∼10 times higher than those made by PMMA-transferred WSe2. The ultraclean graphene film is found to be a good anode for flexible organic photovoltaic cells with a high power conversion efficiency of ∼6.4% achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call