Abstract

The advent of functional devices based on two-dimensional (2D) materials has further intensified the interest in the latter. However, the fabrication of structures using layered materials remains a key challenge. Recently, we proposed the so-called “Laser-Induced Transfer” method (LIT), as a digital and solvent-free approach for the high-resolution and intact transfer of 2D materials’ pixels. Here, we will further highlight the versatility of LIT by reporting results on the high-quality digital transfer of graphene and MoS2. These materials have emerged in the field of nanoelectronics, sensors and photonics due to their unique optoelectronic properties, but their high-quality transfer remains a hurdle. The quality of the transferred films has been confirmed with systematic characterization based on Scanning Electron Microscopy and Raman spectroscopy, as well as mobility’s extraction. Then we will present how the laser induced transfer of these materials can be employed as a key-enabler for the demonstration of the digital deposition of graphene and MoS<sub>2</sub> pixels with form factors and electronic properties suitable for FETs. The presented results highlight the potential of LIT for the wafer scale integration of 2D materials, therefore fostering the wider industrial incorporation of 2D materials in electronics, optoelectronics and photonics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call