Abstract

Twenty-four multiparous high-producing dairy cows (40.0±1.4kg/d) were used in a factorial design to evaluate effects of 2 environments [thermoneutral (TN) and heat stress (HS)] and a dose range of dietary rumen-protected niacin (RPN; 0, 4, 8, or 12g/d) on body temperature, sweating rate, feed intake, water intake, production parameters, and blood niacin concentrations. Temperature–humidity index values during TN never exceeded 68 (stress threshold), whereas temperature–humidity index values during HS were above 68 for 24h/d. The HS environment increased hair coat and skin, rectal, and vaginal temperatures; respiration rate; skin and hair coat evaporative heat loss; and water intake and decreased DMI (3.5kg/d), milk yield (4.1kg/d), 4% fat-corrected milk (2.7kg/d), and milk protein yield (181.7g/d). Sweating rate increased during HS (12.7g/m2 per h) compared with TN, but this increase was only 10% of that reported in summer-acclimated cattle. Niacin supplementation did not affect sweating rate, dry-matter intake, or milk yield in either environment. Rumen-protected niacin increased plasma and milk niacin concentrations in a linear manner. Heat stress reduced niacin concentration in whole blood (7.86 vs. 6.89μg/mL) but not in milk. Reduced blood niacin concentration was partially corrected by dietary RPN. An interaction existed between dietary RPN and environment; dietary RPN linearly increased water intake in both environments, but the increase was greater during HS conditions. Increasing dietary RPN did not influence skin temperatures. During TN, supplementing 12g/d of RPN increased hair coat (unshaved skin; 30.3 vs. 31.3°C at 1600h) but not shaved skin (32.8 vs. 32.9°C at 1600h) temperature when compared with 0g/d at all time points, whereas the maximum temperature (18°C) of the room was lower than skin temperature. These data suggest that dietary RPN increased water intake during both TN and HS and hair coat temperature during TN; however, core body temperature was unaffected. Thus, encapsulated niacin did not improve thermotolerance of winter-acclimated lactating dairy cows exposed to moderate thermal stress in Arizona.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.