Abstract
The present work is concerned with the thermoelasticity theory of Green and Naghdi of type I, II and III. By considering a mixed initial-boundary value problem for an isotropic medium in the context of all three models of type I, II and III in a unified way, we derive an identity in terms of the temperature and potential. On the basis of this identity, we establish the domain of influence theorem for the Green–Naghdi-II model. This theorem implies that for a given bounded support of thermomechanical loading, the thermoelastic disturbance generated by the pair of temperature and potential of the system vanishes outside a well-defined bounded domain. This domain is shown to depend on the support of the load, that is, on the initial and boundary data. It is also shown that under Green–Naghdi-II model, the thermoelastic disturbance propagates with a finite speed that is dependent on the thermoelastic parameters.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have