Abstract
Many machine learning models deployed on smart or edge devices experience a phase where there is a drop in their performance due to the arrival of data from new domains. This paper proposes a novel unsupervised domain adaptation algorithm called DIBCA++ to deal with such situations. The algorithm uses only the clusters’ mean, standard deviation, and size, which makes the proposed algorithm modest in terms of the required storage and computation. The study also presents the explainability aspect of the algorithm. DIBCA++ is compared with its predecessor, DIBCA, and its applicability and performance are studied and evaluated in two real-world scenarios. One is coping with the Global Navigation Satellite System activation problem from the smart logistics domain, while the other identifies different activities a person performs and deals with a human activity recognition task. Both scenarios involve time series data phenomena, i.e., DIBCA++ also contributes towards addressing the current gap regarding domain adaptation solutions for time series data. Based on the experimental results, DIBCA++ has improved performance compared to DIBCA. The DIBCA++ has performed better in all human activity recognition task experiments and 82.5% of experimental scenarios on the smart logistics use case. The results also showcase the need and benefit of personalizing the models using DIBCA++, along with the ability to transfer new knowledge between domains, leading to improved performance. The adapted source and target models have performed better in 70% and 80% of cases in an experimental scenario conducted on smart logistics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.