Abstract
Molecular computing has proved its possibility to solve weighted graph problem such as Hamiltonian Path Problem (HPP), Traveling Salesman Problem (TSP) and the Shortest Path Problem (SPP). Normally, in molecular computation, the DNA sequences used for the computation should be critically designed in order to reduce error that could occur during computation. In the previous paper, we have proposed a readout method tailored specifically to HPP in DNA Computing using real-time PCR for output visualization. Six nodes of HPP was considered. Based on the example instance, the method requires 11 oligonucleotides, where 6 oligonucleotides are for the nodes and 5 oligonucleotides are for the edges. Three TaqMan probes and five primers are required as well. In this study, a procedure for DNA sequence design is presented in order to obtain good sequences for those nodes, primers, and probes. The experiment is done based on the generated DNA sequences and the Hamiltonian Path can be determined successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.