Abstract
AbstractTransition metal catalysts (TMCs) mediated bioorthogonal uncaging catalysis has sparked increasing interest in prodrug activation. However, due to their “always‐on” catalytic activity as well as the complex and catalytic‐detrimental intracellular environment, the biosafety and therapeutic efficiency of TMCs are unsatisfactory. Herein, a DNA‐gated and self‐protected bioorthogonal catalyst has been designed by modifying nanozyme‐Pd0 with highly programmable nucleic acid (DNA) molecules to achieve efficient intracellular drug synthesis for cancer therapy. Monolayer DNA molecules could endow the catalyst with targeting and perform as a gatekeeper to achieve selective prodrug activation within cancer cells. Meanwhile, the prepared graphitic nitrogen‐doped carbon nanozyme with glutathione peroxidase (GPx) and catalase (CAT)‐like activities could improve the catalytic‐detrimental intracellular environment to prevent the catalyst from being inactivated and sensitize the subsequent chemotherapy. Overall, we believe that our work will promote the development of secure and efficient bioorthogonal catalytic systems and provide new insights into novel antineoplastic platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.