Abstract

Many chemicals cause mutation or cancer in animals and humans by forming DNA lesions, including base adducts, which play a critical role in mutagenesis and carcinogenesis. A large number of such adducts are repaired by the DNA glycosylase-mediated base excision repair (BER) pathway, and some are processed by nucleotide excision repair (NER) and nucleotide incision repair (NIR). To understand what structural features determine repair enzyme specificity and mechanism in chemically modified DNA in vitro, we developed and optimized a DNA cleavage assay using defined oligonucleotides containing a single, site specifically placed lesion. This assay can be used to investigate novel activities against any newly identified derivatives from chemical compounds, substrate specificity and cleavage efficiency of repair enzymes, and quantitative structure-function relationships. Overall, the methodology is highly sensitive and can also be modified to explore whether a lesion is processed by NER or NIR activity, as well as to study its miscoding properties in translesion DNA synthesis (TLS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.