Abstract
Underwater multi-target tracking is one of the key technologies for military missions, including patrol and combat in the crucial area. Since the underwater environment is complex and targets’ trajectories may intersect when they are in a dense area, it is challenging to guarantee the precision of observed information. In order to provide high-precision underwater localization and tracking services over an underwater monitoring network, a dynamic network resource allocation mechanism and an underwater multi-target tracking algorithm based on a two-layer particle filter with distributed probability fusion (TLPF-DPF) are proposed. The position estimation model based on geometric constraints and the dynamic allocation mechanism of network resources based on prior position estimation are designed. Using the improved filtering algorithm with known initial states, the reliable tracking of multiple targets with trajectory intersection in a small area under complex noises is achieved. In the non-Gaussian environment, the average positioning error of TLPF-DPF is less by nearly 30% than alternative algorithms. When switching from a Gaussian environment to a non-Gaussian environment, the performance degradation of TLPF-DPF is less than 12%, which exhibits stability compared with other algorithms when targets are close to each other with crossing trajectories.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have