Abstract

Distributed transmission rate tuning is important for a wide variety of IEEE 802.15.4 network applications such as industrial network control systems. Such systems often require each node to sustain certain throughput demand in order to guarantee the system performance. It is thus essential to determine a proper transmission rate that can meet the application requirement and compensate for network imperfections (e.g., packet loss). Such a tuning in a heterogeneous network is difficult due to the lack of modeling techniques that can deal with the heterogeneity of the network as well as the network traffic changes. In this paper, a distributed transmission rate tuning algorithm in a heterogeneous IEEE 802.15.4 CSMA/CA network is proposed. Each node uses the results of clear channel assessment (CCA) to estimate the busy channel probability. Then a mathematical framework is developed to estimate the on-going heterogeneous traffics using the busy channel probability at runtime. Finally a distributed algorithm is derived to tune the transmission rate of each node to accurately meet the throughput requirement. The algorithm does not require modifications on IEEE 802.15.4 MAC layer and it has been experimentally implemented and extensively tested using TelosB nodes with the TinyOS protocol stack. The results reveal that the algorithm is accurate and can satisfy the throughput demand. Compared with existing techniques, the algorithm is fully distributed and thus does not require any central coordination. With this property, it is able to adapt to traffic changes and re-adjust the transmission rate to the desired level, which cannot be achieved using the traditional modeling techniques.

Highlights

  • The proposed algorithm is built on top of the TinyOS operating system [37], using a dialect of C language called nesC

  • This paper presents a fully distributed rate adjustment algorithm for heterogeneous carrier sensing multiple access with collision avoidance (CSMA/CA)

  • The algorithm enables each node in the CSMA/CA network to tune its transmission rate to a desired level with respect to a given throughput demand without any central coordination

Read more

Summary

Introduction

IEEE 802.15.4 has become the de facto standard for wireless sensor networks [1] in a broad spectrum of applications such as home automation [2] and vehicle/satellite communications [3]. The flexibility of the carrier sensing multiple access with collision avoidance (CSMA/CA) enables the implementation of distributed networks with heterogeneous devices [4]. Many of these networks involve sensing and control tasks, which typically have lower traffics compared with normal wireless data network, but require each node to sustain certain throughput demand to guarantee system performance. In a satellite attitude determination and control system (ADCS), various sensor nodes need to successfully transmit a number of packets containing sensor measurements to the controller within a certain time interval in order for the control signal to be properly computed and executed.

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.