Abstract

The recent rapid development of distributed generation (DG) necessitates the consideration of transmission–distribution interactions in voltage stability assessment (VSA), and how to perform a transmission–distribution-coupled static VSA (TDVSA) has become a pressing problem. To resolve this urgent issue, this paper first theoretically analyzes the impacts of the voltage-maintaining capacity and low-voltage tripping of DG units on the static voltage stability of an integrated transmission–distribution system and then proposes a distributed TDVSA method that fully considers these impacts when assessing the voltage stability of the integrated system. As the core of the method, a distributed continuation power flow algorithm is designed that includes a distribution-equivalencing-based predictor, a distributed transmission–distribution corrector, and a step-length regulator and requires only a limited amount of data to be exchanged between the transmission system operator (TSO) and the distribution system operator (DSO). Numerical simulations show that even in the case of low DG penetration, a cascading low-voltage tripping event can significantly degrade an integrated system's voltage stability, and only the proposed distributed TDVSA method can produce an accurate assessment. In addition, the number of iterations between the TSO and DSO is shown to be limited, indicating the potential of applying the proposed method to future grids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.