Abstract

As multi-core architecture has become the mainstream, the corresponding multi-core instruction-set simulation (MCISS) is also needed to aid system development. Ideally, we may run a MCISS in parallel to enhance the simulation speed. However, the conventional centralized timing synchronization mechanism would greatly constrain the parallelism of a MCISS, so the simulation speed is bounded. To resolve this issue, we propose a new distributed timing synchronization technique which allows higher parallelism for a MCISS. Hence, it accelerates the simulation speed by 9 to 20 times as the number of cores increases in contrast to the centralized synchronization approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.