Abstract
A virtual prototyping system is constructed by replacing real processing components with component simulators running concurrently. The performance of such a distributed simulation decreases drastically as the number of component simulators increases. Thus, we propose a novel parallel simulation technique to boost up the simulation speed. In the proposed technique, a simulator wrapper performs time synchronization with the simulation backplane on behalf of the associated component simulator itself. Component simulators send null messages periodically to the backplane to enable parallel simulation without any causality problems. Since excessive communication may degrade the simulation performance, we also propose a novel performance analysis technique to determine an optimal period of null message transfer, considering both the characteristics of a target application and the configurations of the simulation host. Through intensive experiments, we show that the proposed parallel simulation achieves almost linear speedup to the number of processor cores if the frequency of null message transfer is optimally decided. The proposed analysis technique could predict the simulation performance with more than 90% accuracy in the worst case for various target applications and simulation environments we have used for experiments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.